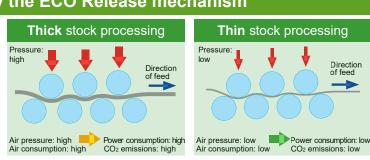
AMADA PRESS SYSTEM CO., LTD.

General Catalogue for the Straightener-Feeders *LCC* Series

Lineup of the highly reliable LCC Series of NC Straightener-Feeders


Thickness: Max 0.472"

Material width The **DRII** brand, which incorporates high technology and abundant experience, provides a wide variety of options for the diverse needs of our customers.

Energy saving of up to 50% by the ECO Release mechanism

ECO Release

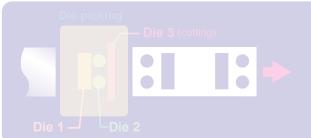
The ECO Release mechanism contributes to energy savings. Since it is possible to control the optimum air cylinder pressure according to the processing material and plate thickness, power consumption can be reduced by up to about 50%.

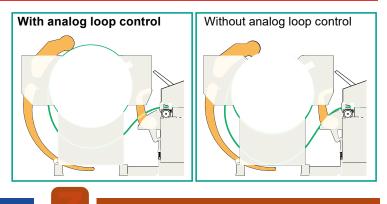
TP-CCS control system with a user-friendly touch screen

Required information for setup, operation, maintenance, etc. is centrally managed in the four basic modes of setting, setup, operation, and maintenance. It is a total operation system equipped with various functions to support diversification and sophistication of product processing and shortened work time.

Improved product quality and simplified setup with analog loop control

Analog loop control is a function that converts the loop control of the uncoiler into analog and synchronizes the unwinding speed of the coil with the line speed.


During automatic operation, the uncoiler keeps rotating at a constant speed without stopping, preventing the coil material from unraveling uncontrollably and promoting stable processing. This prevents scratches on the coil material, improving product quality and the life of parts, and simplifies coil material replacement.



Diverse processing with multistage die picking

We have introduced our unique rationalization knowhow to meet the strong needs of a multi-stage feeding system for stamping press machines.

This is a function to set the feed length, die selection, etc. for each stage and operation of the machine. Up to 99 steps can be set for each product. The number of repetitions and the synchronization signal to the press can also be set, supporting a wide variety of processing.

Yield improvement with zigzag feeding system

It greatly improves the yield and reduces the material cost.

This is an optional feed system that enables zigzag feeding, which will reduce the generation of scrap material and cost, and is environmentally conscious.

A lineup of NC Straighter-Feeders, from space-saving to

High-Performance Type

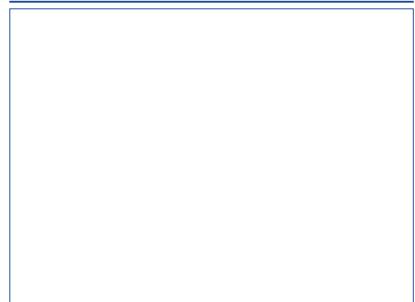
It is an intelligent high-performance type equipped with a **TP-CCS** control system that realizes total operation.

Width: 1.968" ~ 23.622" Thickness: Max 0.126"

This is an economical model that takes advantage of on-site needs.

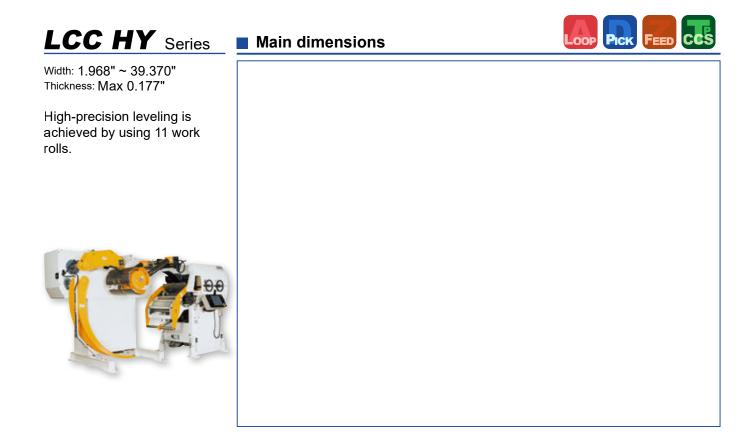
LCC HF4/HF2

Width: 1.968" ~ 39.370" Thickness: Max 0.177"



This is a highly operable and reliable model that allows material to be passed through with a simple button operation.

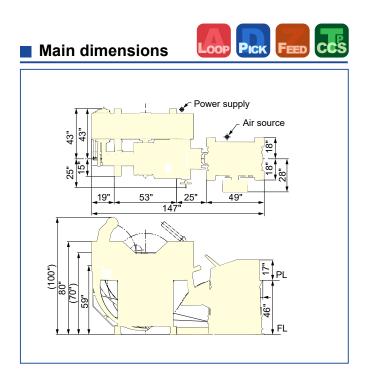
Main dimensions



Series Main dimensions

High-Performance Type

large-scale, which streamlines stamping press processing



Width: 2.756" ~ 9.842" Thickness: Max 0.236"

This is ideal for material for small parts and saving space.

FCO

Release

LCC HR3 Series realizes productivity and operability by condensing high versatility in a compact size.

Eco

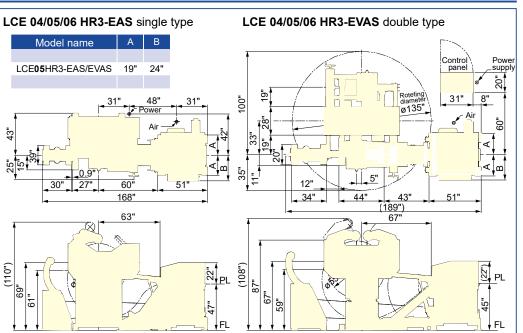
Pick

Width: 2.756" ~ 51.181" Thickness: Max 0.236"

LCC HR3 Series

Main dimensions

LCE HR3 Serie


Width: 2.756" ~ 23.622" Thickness: Max 0.236"

With just a one-button operation, coil material threading and loop formation have been automated. Achieves both improved work setup and high economic efficiency.

Series Main dimensions

High-Performance Type

LCE HR3 Series Double uncoiler type

Compact Type

LCC KR3 Series

Width: 1.968" ~ 15.748" Thickness: Max 0.126"

This is a compact best-selling model, which promotes space saving and high performance. Maintenance, including roll cleaning, has been made easy by making it possible to open the cover over the straightener to access the inside.

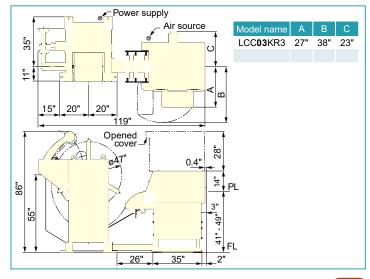
LCC 03KL Series

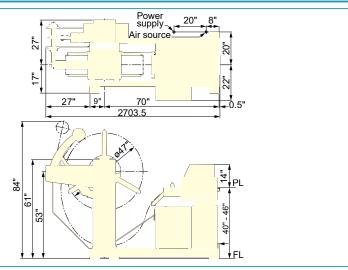
Width: 1.968" ~ 11.811" Thickness: Max 0.126"

This is a model that pursues economic efficiency by simplifying and downsizing to the utmost limit.

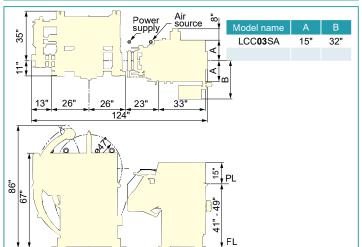
LCC SA Series

Width: 1.968" ~ 15.748" Thickness: Max 0.126"


This is a compact model equipped with ASC control (which detects the outer diameter of the coil material and automatically changes the amount of correction), 11 work rolls to improve flatness, and a motor-controlled cover opening mechanism that makes roll cleaning easy.

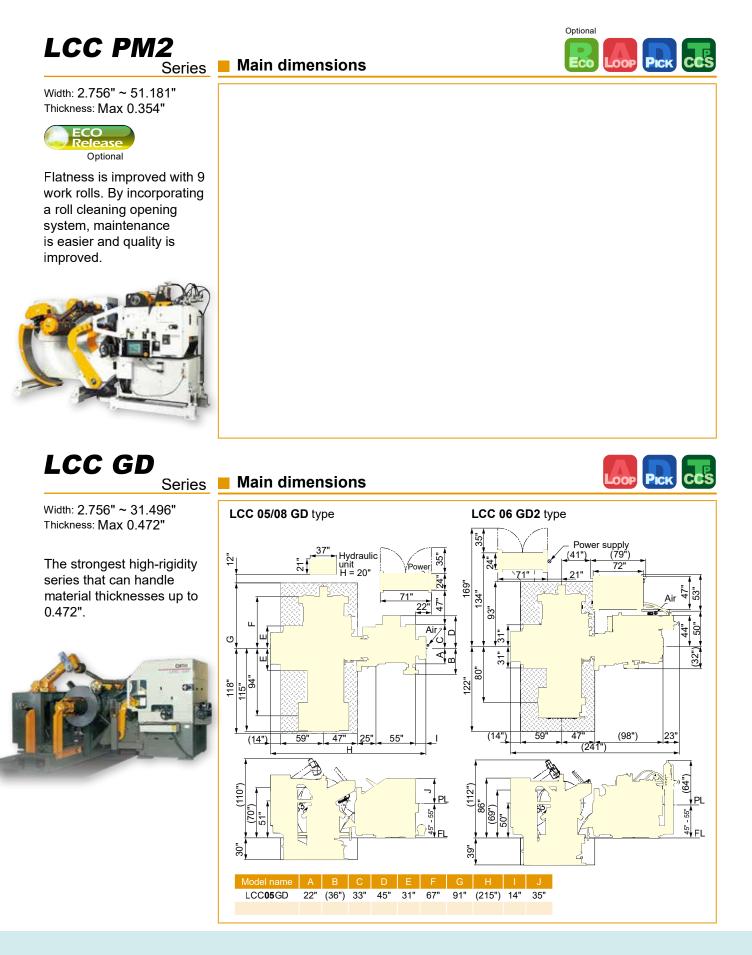

Meets the need for high performance and saving space.

Main dimensions



Main dimensions

Main dimensions



FEED

Heavy-Duty Type

Heavy-Duty Type A heavy-duty type that emphasizes high rigidity.

Specifications							
Optional Feed Master function is avai	ilable for feed lengths t	hat exceed standa	rd specifications	(Common specifica	tions	

 Optional Feed Master function is available for feed lengths that exceed standard specifications.
 Common specifications

 The values with () are for automatic coil material threading type.
 - Inner coil diameter: ø20"
 - Power supply: 200/220 V

 The values in the table above are for the single uncoiler type.
 Please contact us for the double uncoiler type.
 - Feed roll: 1 pair
 - Air pressure: 0.5 MPa

 If the mode name ends -E, it means -EAS. If it ends in -V, it means -EVAS.
 - Master Common specifications
 - Air pressure: 0.5 MPa

Straightening performance (Stock width)

LCC04KR3	15.7	48	14.173 1	12.992	10.236	8.661	7.480	6.693	5.906	4.331										
LCC03SA	11.8	11	1	10.630	9.055	8.268	6.693	6.299	5.118	4.724										
LCC04HF1		15.748		[14.567	11.811	9.055	7.480	5.906	4.331										
LCC06HF1	23.6	22	22.047 1	18.504	14.567	11.811	9.055	7.480	5.906	4.331										
LCC05HF2	19.685						16.535	14.567	12.598	10.630	8.268	6.693								
LCC08HF2	31.496	27.559	22.835 1	19.291	16.535	14.961	12.598	11.417	10.236	8.661	6.693	5.906								
LCC04HF4			15.74	48					14.567	12.205	8.661	6.693								
LCC06HF4			19.685	17.323	14.567	12.992	11.417	9.843	7.874	6.299										
LCC06HY1	:	23.622	1	18.898	14.961	12.205	9.055	7.480	5.906	4.724										
LCC05HY2-V		19.6	685				16.535	14.961	12.992	11.024	7.480	5.906								
LCC06HY2-V		23.622			20.472	18.11	14.961	13.78	12.205	10.236	7.48	5.906								
LCC08HY2	31.496	29.528	24.016 2	20.079	17.717	15.748	13.386	12.205	10.630	9.449	7.087	5.906								
LCC92HT								9.8	43					7.874						
LCE04HR3-V					15.	748						14.173	11.417	7.874						
LCE05HR3-V		19.685									17.717	14.173	11.417	7.874						
LCE06HR3-V							17.717	14.173	11.417	7.874										
LCC05HR3-E					19.685						17.717	14.173	11.417	7.874						
LCC06HR3-E					23.622						17.717	14.173	11.417	7.874						
LCC08HR3-V				31.4	196					27.953	17.717	14.173	11.417	7.874						
LCC10HR3			3	39.370					36.614	27.953	17.717	14.173	11.417	7.874						
LCC06HLS-E	(23.622) (23.622)	23.622 19.685	16.929 1	14.567	12.992	11.417	9.843	9.055	7.874	6.693	5.118	4.724	3.937	3.150						
LCC08HLS-V	31.496 (29.921)	23.622 19.685	16.535 1	14.567	12.598	11.417	9.843	8.661	7.874	6.693	5.118	4.331	3.937	3.150						
LCC13HLS	39.764 (29.528)	23.228 19.291	16.142 1	14.173	12.598	11.024	9.449	8.661	7.480	6.693	5.118	4.331	3.937	3.150						
LCC06HLU-V	23.622		23.622				21.654	18.504	14.567	11.024	7.087	5.512	4.331	3.150						
LCC10HLU	39.370	39.370	3	37.008	23.622	28.740	21.654	18.504	14.567	11.024	7.087	5.512	4.331	3.150						
LCC03PM2-E				_				11.811		_										
LCC06PM2-V			622							17.717	12.992	9.843	7.874							
LCC10PM2	39.370 31.496 25.197 17.717 12.992 9.84											9.843	7.874							
LCC05GD			(19.685)							19.685							18.898	15.354	12.598	10.630
LCC06GD2									23.	622							18.898	15.354	12.598	10.630

The above table is for materials having yield strength of 245 MPa. The values in the red frame indicate materials having yield strength of 613 MPa. If the mode name ends -E, it means -EAS. If it ends in -V, it means -EVAS.

General Catalogue for the Straightener-Feeders

Main equipment

		Model name																
Equipm	nent		KL	KR3	SA	HF1	HF2 HF4	HY1	HY2	ΗТ	HR3	LCE HR3	HLS HLU	PM2	GD	GI		
Standard	*1 Hyd	raulic e	xpansio	on for ste	ock widt	h over 3	39.370"	or coil r	nass	*3	Hard cł	nrome p	lating fir	nished				
Optional	ove	r 15432 496".	2 lbs, pr	eumatio						*4	Some p	arts car	nnot be	specified CCS con				
Before using th carefully and for	nose proc	ducts, p	lease re	ead the	operato	r's manı	ual							t of use				

- Options are included in the photos.
- Specifications, appearance, and equipment are subject to change without notice for improvement and other purposes.

© AMADA PRESS SYSTEM CO., LTD. All Rights Reserved.

AMADA PRESS SYSTEM AMERICA INC.

1840 AIRPORT EXCHANGE BLVD #200 ERLANGER, KY. 41018 U.S.A.

responsibility of the end user.